Monday, January 25, 2016

Quy tắc tính xác suất

a)    Biến cố hợp
       Cho hai biến cố AABB. Biến cố “AA hoặc BB xảy ra”, kí hiệu là ABAB, được gọi là hợp của hai biến cố A và B.



Nếu ΩAΩAΩBΩB lần lượt là tập hợp các kết quả thuận lợi cho AABB thì tập hợp các kết quả thuận lợi cho     ABABΩAΩBΩAΩB.
Ví dụ 1: Chọn ngẫu nhiên một học sinh trong trường em. Gọi A là biến cố “Bạn đó là học sinh giỏi Toán” và B là biến cố “ Bạn đó là học sinh giỏi Văn”. Khi đó ABABlà biến cố “ Bạn đó học giỏi Văn hoặc giỏi Toán”
Tổng quát: Cho kkbiến cố A1,A2,...,AkA1,A2,...,Ak. Biến cố “Có ít nhất một trong các biến cố A1,A2,...,AkA1,A2,...,Ak xảy ra”, kí hiệu là A1A2...AkA1A2...Ak, được gọi là hợp của kk biến cố đó.
b)  Biến cố xung khắc
Cho hai biến cố A và B. Hai biến cố A và B được gọi là xung khắc nếu biến cố này xảy ra thì biến cố kia không xảy ra.
Hai biến cố A và B là hai biến cố xung khắc nếu và chỉ nếu ΩAΩB=ΩAΩB=
c)  Quy tắc cộng xác suất:
Để tính xác suất của biến cố hợp, ta cần đến quy tắc cộng xác suất sau đây:
Nếu hai  biến cố A và B xung khắc thì xác suất để A hoặc B xảy ra là
P(AB)=P(A)+P(B)(1)P(AB)=P(A)+P(B)(1)
Ví dụ 3: Một chiếc hộp có chín thẻ đánh số từ 1 đến 9. Rút ngẫu nhiên hai thẻ ròi nhân hai số ghi trên hai thẻ với nhau. Tính xác suất để kết quả nhận đc là một số chẵn.
Giải:
Kết quả nhận được là số chẵn khi và chỉ khi trong hai thẻ có it nhất một thẻ đánh số chẵn (Gọi là thẻ chẵn). Gọi A là biến cố “Rút được một thẻ chẵn và một thẻ lẻ”, B là biến cố “ Cả hai thẻ được rút là thẻ chẵn”.
Khi đó biến cố “Tích hai số ghi trên hai thẻ là một số chẵn” là ABAB.
Do hai biến cố A và B xung khắc, nên P(AB)=P(A)+P(B)P(AB)=P(A)+P(B). Vì có 4 thẻ chẵn và 5 thẻ lẻ nên
Ta có
P(A)=C15.C14C29=2036P(A)=C51.C41C92=2036, P(B)=C24C29=636P(B)=C42C92=636
Do đó             P(AB)=2036+636=1318P(AB)=2036+636=1318
Quy tắc cộng xác suất cho nhiều biến cố được phát biểu như sau:
Cho kk biến cố A1,A2,...,AkA1,A2,...,Ak đôi một xung khắc. Khi đó
P(A1A2...Ak)=P(A1)+P(A2)+...+P(Ak)(2)P(A1A2...Ak)=P(A1)+P(A2)+...+P(Ak)(2)
 d)  Biến cố đối
Cho A là một biến cố. Khi đó biến cố “ Không xảy ra A”, kí hiệu là A¯¯¯¯A¯, được gọi là biến cố đối của A.
Chú ý: Hai biến cố đối nhau là hai biến cố xung khắc. Tuy nhiên hai biến cố xung khắc chưa chắc là hai biến cố đối nhau.
Định lý:
Cho biến cố AA. Xác suất của biến cố đối A¯¯¯¯A¯
P(A¯¯¯¯)=1P(A)P(A¯)=1P(A)                                   (3)   
Ví dụ 4: Một hộp đựng 4 viên bi xanh, 3 viên bi đỏ và 2 viên bi vàng. Chọn ngẫu nhiên 2 viên bi.
a)Tính xác suất để chọn được hai viên bi cùng màu.
b)Tính xác suất để chọn được hai viên bi khác màu.
Giải:
a)Gọi A là biến cố “chọn được 2 viên bi xanh”, B là biến cố “chọn được hai viên bi đỏ”, C là biến cố “chọn được hai viên bi vàng” và H là biến cố “Chọn được 2 viên bi cùng màu”. Ta có H=ABCH=ABC và các biến cố A,B,C đôi một xung khắc. Vậy theo công thức (2)(2), ta có
P(H)=P(ABC)=P(A)+P(B)+P(C)P(H)=P(ABC)=P(A)+P(B)+P(C)
Ta có: P(A)=C24C29=636P(A)=C42C92=636,    P(B)=C23C29=336P(B)=C32C92=336,      P(C)=C22C29=136P(C)=C22C92=136
Vậy  P(H)=636+336+136=518P(H)=636+336+136=518
b)    Biến cố “Chọn được 2 viên bi khác màu” chính là biến cố H¯¯¯¯¯H¯. Vậy theo công thức (3)(3), ta có:
P(H¯¯¯¯¯)=1P(H)=1518=1318.P(H¯)=1P(H)=1518=1318.
2.Quy tắc nhân xác suất:
a) Biến cố giao
Cho hai biến cố A và B. Biến cố “Cả A và B cùng xảy ra”, kí hiệu là ABAB, được gọi là giao của hai biến cố A và B.
Cho kk biến cố A1,,A2,...,AkA1,,A2,...,Ak. Biến cố “Tất cả kk biến cố A1,A2,...,AkA1,A2,...,Ak đều xảy ra”, kí hiệu là A1,A2...AkA1,A2...Ak, được gọi là giao của kk biến cố đó.
b) Biến cố độc lập
Hai biến cố A và B được gọi là độc lập với nhau nếu việc xảy ra hay không xảy ra của biến cố này không làm ảnh hưởng tới xác suất xảy ra của biến cố kia.
Cho kk biến cố A1,,A2,...,AkA1,,A2,...,Ak, kk biến cố này được gọi là độc lập với nhau nếu việc xảy ra hay không xảy ra của mỗi nhóm biến cố tùy ý trong các biến cố đã cho không làm ảnh hưởng tới xác suất xảy ra của các biến cố còn lại
c)    Quy tắc nhân xác suất
Để tính xác suất của biến cố giao, ta cần đến quy tắc nhân xác suất sau đây
Nếu hai biến cố A và B độc lập với nhau thì
P(AB)=P(A)P(B)(4)P(AB)=P(A)P(B)(4)
Nhận xét: Từ quy tắc nhân xác suất ta thấy: Nếu P(AB)P(A)P(B)P(AB)P(A)P(B)thì hai biến cố A,B không độc lập với nhau. Ngược lại nếu có (4)(4) thì A và B là hai biến cố độc lập với nhau.
•    Quy tắc nhân cho nhiều biến cố:
Nếu kk biến cố A1,,A2,...,AkA1,,A2,...,Ak độc lập với nhau thì P(A1A2...Ak)=P(A1)P(A2)...P(Ak)(5)P(A1A2...Ak)=P(A1)P(A2)...P(Ak)(5)

No comments:

Post a Comment